Elaheh Gohania Gholamreza Mansourfar Fahimeh Biglari
Interior Point Algorithm in Multi-objective Portfolio Optimization: GlueVaR Approach
Investors, in their pursuit to maximize expected returns, minimize risks in their stock portfolios, and achieve the desired benefits, require suitable methods and criteria to select stocks for their portfolios and allocate capital. One of the most important things in stock portfolio optimization is the use of a suitable optimization algorithm. The function of the multi-objective portfolio optimization model is quadratic. Quadratic functions are a special class of nonlinear programming problems in which the objective function is quadratic and the constraints are linear. Common algorithms for quadratic programming require certain parameters with fixed values. Such algorithms are extensively employed for solving real-world problems, particularly in financial contexts. The major objective of this research is to apply the inner point mathematical algorithm to optimize the stock portfolio and to use this algorithm to address the multi-objective portfolio optimization problem. With the GlueVaR risk measurement criterion, the problem of portfolio optimization takes into account the two objectives of maximizing returns during the research period and reducing investment risk, reassuring investors to make better and more accurate decisions about the final object of this research.